A Framework for Deflated and Augmented Krylov Subspace Methods
نویسندگان
چکیده
We consider deflation and augmentation techniques for accelerating the convergence of Krylov subspace methods for the solution of nonsingular linear algebraic systems. Despite some formal similarity, the two techniques are conceptually different from preconditioning. Deflation (in the sense the term is used here) “removes” certain parts from the operator making it singular, while augmentation adds a subspace to the Krylov subspace (often the one that is generated by the singular operator); in contrast, preconditioning changes the spectrum of the operator without making it singular. Deflation and augmentation have been used in a variety of methods and settings. Typically, deflation is combined with augmentation to compensate for the singularity of the operator, but both techniques can be applied separately. We introduce a framework of Krylov subspace methods that satisfy a Galerkin condition. It includes the families of orthogonal residual and minimal residual methods. We show that in this framework augmentation can be achieved either explicitly or, equivalently, implicitly by projecting the residuals appropriately and correcting the approximate solutions in a final step. We study conditions for a breakdown of the deflated methods, and we show several possibilities to avoid such breakdowns for the deflated minimum residual (MinRes) method. Numerical experiments illustrate properties of different variants of deflated MinRes analyzed in this paper.
منابع مشابه
Deflated and Augmented Krylov Subspace Methods: A Framework for Deflated BiCG and Related Solvers
We present an extension of the framework of Gaul et al. (SIAM J. Matrix Anal. Appl. 34, 495–518 (2013)) for deflated and augmented Krylov subspace methods satisfying a Galerkin condition to more general Petrov–Galerkin conditions. The main goal is to apply the framework to the biconjugate gradient method (BiCG) and some of its generalizations, including BiCGStab and IDR(s). For such application...
متن کاملDeflated and Augmented Krylov Subspace Techniques
We present a general framework for a number of techniques based on projection methods onàugmented Krylov subspaces'. These methods include the deeated GM-RES algorithm, an inner-outer FGMRES iteration algorithm, and the class of block Krylov methods. Augmented Krylov subspace methods often show a signiicant improvement in convergence rate when compared with their standard counterparts using the...
متن کاملSpectral Deflation in Krylov Solvers: a Theory of Coordinate Space Based Methods
For the iterative solution of large sparse linear systems we develop a theory for a family of augmented and deflated Krylov space solvers that are coordinate based in the sense that the given problem is transformed into one that is formulated in terms of the coordinates with respect to the augmented bases of the Krylov subspaces. Except for the augmentation, the basis is as usual generated by a...
متن کاملRecent computational developments in Krylov subspace methods for linear systems
Many advances in the development of Krylov subspace methods for the iterative solution of linear systems during the last decade and a half are reviewed. These new developments include different versions of restarted, augmented, deflated, flexible, nested, and inexact methods. Also reviewed are methods specifically tailored to systems with special properties such as special forms of symmetry and...
متن کاملAccelerating Convergence by Augmented Rayleigh-Ritz Projections For Large-Scale Eigenpair Computation
Iterative algorithms for large-scale eigenpair computation are mostly based subspace projections consisting of two main steps: a subspace update (SU) step that generates bases for approximate eigenspaces, followed by a Rayleigh-Ritz (RR) projection step that extracts approximate eigenpairs. A predominant methodology for the SU step makes use of Krylov subspaces that builds orthonormal bases pie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 34 شماره
صفحات -
تاریخ انتشار 2013